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I. Introduction

Low-tg':ust propulsion systems have been identified as an efficient means for perform-

ing space missions. Spacecraft propelled by low-thrust engines are capable of delivering

a greater payload fraction compared to spacecraft using conventional chemical propul-

sion systems. Recently, several research efforts have investigated numerous applications of

low-thrust propulsion including a manned Mars mission [1], scientific missions to Jupiter,

Uranus, Neptune and Pluto [2], and lunar missions leading to a permanent lunar colony [3]-

[5]. Aston [6] has also demonstrated the merits and feasibility of using low-thrust propulsion

to ferry cargo between low-Earth orbit and low-lunar orbit. The study of optimal trajecto-

ries and guidance, control, and navigation (GN&C) for low-thrust spacecraft is an integral

part of these research efforts.

In response to the release of NASA's 1994 Announcement of Opportunity (AO) for

Discovery class interplanetary exploration missions, a preliminary investigation of a lunar-

comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed.

The Discovery mission (eventually named Diana) was envisioned to be a two-phase scientific

exploration mission: the first phase involved exploration of the moon and second phase

involved rendezvous with a comet. The initial phase began with a chemical propulsion
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translunar injection and chemical insertion into a lunar orbit, followed by a low-thrust

SEP transfer to a circular, polar, low-lunar orbit (LLO). After scientific data was collected

at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin tile

interplanetary leg of the mission. After escape from the Earth-moon system, the SEP

spacecraft maneuvered in interplanetary space and performed a rendezvous with a short-

period comet. The immediate goal of this study was to demonstrate the feasibility of using

a low-thrust, SEP spacecraft for orbit transfer to both tile moon and to a comet. Another

primary goal was to develop a computer optimization code which would be robust enough

to obtain minimum-fuel rendezvous trajectories for a wide range of comets.

This final report is a summary of tile initial research efforts that were undertaken in

support of the Discovery mission proposal that was submitted to NASA Headquarters in Oc-

tober 1994. Section II discusses the initial interplanetary phase of the study which involves

developing a robust, efficient trajectory optimization program for computing minimum-fuel

rendezvous trajectories with various comets. Sections Ill and IV discuss the computation

of the optimal lunar capture and escape trajectories using the SEP spacecraft. Finally,

section V presents the conclusions of this research effort.

II. Comet Rendezvous Study

Although the comet rendezvous phase of the Diana mission is after the lunar cap-

ture/escape phase, it was deemed to be of primary importance in the preliminary inves-

tigation since selecting the "best" comet for rendezvous would drive the mission's perfor-

mance. The initial problem was to develop a trajectory optimization code that was capable

of obtaining the minimum-fuel rendezvous trajectory for a wide variety of target comets.

Since a catalog of about 30 comets with orbital periods under 6 years and inclinations

under 10 deg existed, a quick and efficient method for computing optimal SEP trajectories

was required. For the sake of completeness, the optimal control problem for the comet
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rendezvous is presented in detail in the next sub-section.

Trajectory Optimization

The objective is to compute tile minimum-fuel, continuous-thrust trajectory for a comet

rendezvous in heliocentric space. Since the low-thrust SEP engine is assumed to be continu-

ously operating at a constant mass flow rate, the minimum-time trajectory will correspond

to the minimum-fuel trajectory. The complete optimal control problem is given below:

For the free end-time problem, find the orientation of the hyperbolic excess velocity

vector g_o, the pitch and yaw thrust steering angles u(t) and v(t), and the Julian date for

Earth sphere of influence (SOI) departure to which minimize

J=tf (1)

subject to the two-body equations of motion

_= f(t,x,u,v) (2)

with the initial conditions

x(0)= g(to,goo) (3)

and the terminal state constraints

¢[x(ti),tll =

a(ts)-ac
_(t_)- ec
i(t])-ic

a(tS)- ac
_'(tl) --_

'0_

0

0

0

0

_Oj

(4)

The differential equations of motion are represented by Eq. (2) and are the two-

body equations of motion for the thrusting SEP spacecraft in a sun-centered equinoc-

tial coordinate system. The state vector x is comprised of the six equinoctial elements

x = [a, h, k,p, q, F] T which are functions of the classical orbital elements a (semi-major
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axis), e (eccentricity), i (inclination), f_ (right ascension of the ascending node), co (argu-

ment of periapsis), and E (eccentric anomaly):

a=a (5)

h = esin(w + F/) (6)

k = cos(co+ (7)

p = tan(i/2) sin fl

q = tan(i/2) cos l_

(8)

(9)

F = _ + co + E (10)

The right-hand sides of the equations of motion are denoted by the vector f and the

detailed equations can be found in Ref. [7]. The pitch (in-plane) and yaw (out-of-plane)

thrust steering angles of the SEP spacecraft are u(t) and v(t), respectively. The initial

conditions as denoted by Eq. (3) are a function of the Julian departure date to and the

hyperbolic excess velocity _oo. The initial velocity 6o of the SEP spacecraft with respect to

the sun is calculated by the below vector equation

_o = 5_ + 5E (11)

where gE is the velocity of the Earth with respect to the sun at the Julian date to. The

hyperbolic velocity _oo is assumed to have a magnitude of 1.24 km/s which represents an

estimate of the excess energy after the SEP spacecraft has escaped the Earth-moon system

and reached the Earth's SOI. Since Eq. (11) is a vector equation, the orientation of 6oo

needs to be defined.

The terminal state constraints as denoted by Eq. (4) require that the final classical

orbital elements of the SEP spacecraft match the orbital elements of the comet for proper
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rendezvousconditions. The subscriptc indicatesthe constantorbital elementsof the target

comet. The equinoctial elementsof the spacecraft(x(t/)) must be transformed into the

classicalorbital elementsat the final time. Both true anomalyu for the spacecraft and the

comet have a dependence on final time t/.

Solution Approach

In general, an optimal control problem may be solved using either direct or indirect

methods. An indirect method involves applying calculus of variations principles and solv-

ing the corresponding two-point boundary value problem (2PBVP). This is usually an ex-

tremely difficult problem except in the case of a simple dynamic system. A direct method

utilizes a parameterization of the control and attempts to directly reduce the performance

index value at each iteration. Typically, direct methods are more robust than indirect

methods since indirect methods rely on fairly accurate knowledge of the initial costate or

adjoint variables. Furthermore, our problem involves sensitive boundary conditions and a

mix of control functions and control parameters and therefore a direct optimization method

is used here. The optimal control problem is replaced with an approximate nonlinear pro-

gramming problem (NLP) with the continuous control histories (u(t) and v(t) ) replaced

with a finite number of parameters. The control functions are parameterized by cubic

spline interpolation through a fixed number0f control points. The nonlinear programming

problem is numerically solved using sequential quadratic programming (SQP) which is a

constrained parameter optimizaliion method [8]. The SQP algorithm used here utilizes

first-order finite differences to approximate the gradients and is due to Pouliot [9].

The SQP problem formulation involves 26 optimization parameters and six equality

constraints. Four SQP design variables are required for the orientation of _7oo(two angles),

the Julian date at Earth $OI departure to, and the total time of flight t/. Eleven evenly-

spaced control nodes are used to parameterize the thrust steering angles u(t) and v(t).



The six equality constraints enforce the required matching between the classical orbital

elements of the spacecraft and the orbital elements of the comet at t = t/ as indicated

by Eq. (4). The equations of motion are numerically integrated by using a standard

fourth-order, fixed-step, Runge-Kutta integration scheme with 500 steps.

The robustness of the direct optimization approach is enhanced by utilizing a penalty

function method. That is, the complete minimization problem is not solved in one step

since convergence to a complete rendezvous would be very difficult to obtain without a

good initial guess. Therefore, a penalty function is formed by augmenting the performance

index J = t/with a penalty term:

m

7 = t/A- _ ¢2 (12)
i--=1

and the augmented performance index J is minimized by the SQP optimization code.

The penalty function term is the sum of the squares of the elements of the terminal state

constraint vector defined by Eq. (4). A sequence of problems is solved for an increasing

value of the integer rn. Initially, rn = 2 and the first sub-problem involves matching the

size and shape (a and e) of the comet's orbit at t = t/ with only two equality constraints.

Once a solution is obtained, rn is set to 3 and a second sub-problem is solved to match

a, e, and i. The procedure is repeated until rn = 6 and all six terminal state constraints

are met. Finally, the true minimum-fuel trajectory is obtained without a penalty function

(i.e., J = t/) and all six equality constraints are enforced. The penalty function approach

enhances the convergence properties of the optimization process since the SQP code can

simultaneously work on reducing transfer time and errors in the terminal state constraints.

Therefore, convergence is greatly improved for poor initial guesses.

Results

The optimal minimum-fuel rendezvous trajectories were computed for an SEP spacecraft
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derived from the Transfer Orbit PlasmaInvestigationExperiment (TROPIX) Project [10].

The fixed spacecraftcharacteristicsaresummarizedin Table 1. Estimatesof the low-thrust

spiral time for the lunar captureandescapetrajectories areusedto computethe initial mass

of the SEP spacecraftat the start of the heliocentricphase.For this preliminary research,

the engine power P is assumed to be constant during the entire heliocentric trajectory.

Therefore, thrust T and propellant mass flow rate rh are both constant during the orbit

transfer.

Table 1: SEP vehicle parameters - start of heliocentric phase

Initial mass Power Isp Thrust rh

(kg) (kW) (s) (N) (kg/day)

280 1.8 3800 0.077 0.18

Tile first rendezvous target attempted is the comet Wilson-Harrington. The sequence

of sub-problems approach with the penalty function method guided the SQP optimization

code to the minimum-fuel rendezvous trajectory. Optimal departure date from the Earth's

SOI was found to be May 19, 2000 and the resulting arrival date at Wilson-Harrington was

found to be November 18, 2001. Therefore, the heliocentric flight time is 1.502 years and the

resulting fuel mass is 98.2 kg. The final SEP spacecraft mass at rendezvous is 181.8 kg and

the final mass ratio ms/m0 is 0.65. The rendezvous occurs at a distance of about 3.0 AU

from the sun at a true anomaly of u = 137.8 deg. Therefore, the SEP spacecraft "catches

up" and matches the comet's orbit as Wilson-Harrington is moving away from the sun and

approaching apohelion. The minimum-fuel heliocentric trajectory is presented in Fig. 1.

It is observed that the SEP spacecraft completes only about 1/2 revolution about the sun

before rendezvous with Wilson-Harrington. Since input solar power typically decreases at

a rate approximately proportional to the inverse square of the distance to the sun, the

power at 3 AU will be approximately 10% of the initial power at 1 AU. In this preliminary

analysis, power is assumed to be constant; subsequent work utilized more realistic solar
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Figure 1: Minimum-fuel heliocentric trajectory to Wilson-Harrington

power ratios as a function of distance to the sun.

The second rendezvous target is the comet Clark. The optimal departure date from the

Earth's SOI is September 12, 1999, the heliocentric time of flight is 1.388 years, and the

resulting arrival date at Clark is January 31, 2001. Therefore, the resulting fuel mass is

90.8 kg, the final SEP spacecraft mass at rendezvous is 189.2 kg and the final mass ratio

ml/rno is 0.68. The rendezvous occurs at a distance of about 1.7 AU from the sun at a true

anomaly of u = 40.5 deg. Therefore, the SEP spacecraft completes the rendezvous with

Clark closer to perihelion than the rendezvous with Wilson-Harrington. The minimum-fuel

heliocentric trajectory is presented in Fig. 2. It is observed that the SEP spacecraft nearly

completes a full revolution about the sun before rendezvous with Clark and remains closer

to the sun during the entire trajectory compared to the Wilson-Harrington rendezvous

trajectory.

The respective minimum-fuel, continuous-thrust, comet rendezvous trajectories were
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Figure 2: Minimum-fuel heliocentric trajectory to Clark

utilized as initial guesses for a calculus of variations-based trajectory optimization code.

Subsequently, many optimal minimum-fuel comet rendezvous trajectories with multiple

burn and coast arcs were obtained. It was through this process that Wilson-Harrington

was identified as the "best" comet for minimum-fuel rendezvous for the Diana mission.

III. Lunar Capture Trajectories

The initial phase of the Diana mission involves the combined chemical-electric propul-

sion transfer to a polar, circular, 100 km altitude LLO. The chemical translunar insertion

(TLI) burn is performed by the upper stage of a Delta II booster and a subsequent lunar

orbit insertion (LOI) chemical burn places the SEP spacecraft into a prescribed elliptical

orbit about the moon. The SEP system is then used to perform the remaining orbit transfer

to polar LLO. In this section, the optimal minimum-fuel, lunar capture and circularization

trajectory is computed for the SEP spacecraft.



Trajectory Optimization

The objective is to compute tile minimum-fuel, continuous-thrust trajectory for the

circularization maneuver from a given polar elliptical orbit to a circular, polar, 4000 km

altitude high lunar orbit (HLO). The initial polar elliptical lunar orbit is the result of the

LOI chemical burn and is fixed at a 1000 × 50,000 km ellipse. For this preliminary analysis,

it was determined that the apolune should be less than the lunar sphere of influence (SOl)

and that the perilune should be safely above tile moon's surface. The chemical fuel required

for the LOI burn could be reduced by allowing a higher apolune distance, but three-body

effects could adversely alter the elliptical lunar orbit before the SEP circularization maneu-

ver is initiated if the apolune distance is well outside the SOI. The final HLO represents a

proposed relay satellite orbit and tile main SEP spacecraft will continue on down to polar

LLO after releasing the relay spacecraft.

The complete optimal control problem is given below:

For the free end-time problem, find the pitch and yaw thrust steering angles u(t) and

v(t), and the coast time to the start of the SEP initiation tco_st which minimize

J = -m(tl) (13)

subject to the three-body equations of motion

dr
--=vr (14)
dt

d
_V----L= V-Z "4- aT sin u cos v + VUr
dt r

dvo VrVo
-- -4- aT COSUCOSV -+" _TVo

dt r

dfl sin 0

dt - vo sin i (aT sin v + XTUh)

di cos 0
-- -- (aT sin v + VUh)
dt vo

(15)

(16)

(17)

(18)
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where aT --

dO vo

dt r

sin 0 cos i

vo sin i
(aT Sill V -t- VUh)

T

rnLo I -- rrtt '
0<t<t I

(19)

with the initial conditions

r(O) = 2,738 km (20)

v (o) =o (21)

vo(O) = 1.84427 km/s (22)

a(O) = 261.55 deg (23)

i(O) = 90 deg (24)

0(0) = 137.38 deg (25)

and the terminal state constraints

v,(tl) / (26)

The states are radial position r, radial velocity vr, circumferential velocity vo, longitude of

the ascending node angle f_, inclination i, and in-plane longitude angle 0. The radius r is

the distance from the center of the moon to the spacecraft and v_ and vo are the inertial

velocity components measured in the instantaneous orbit plane. The ascending node angle

f_ is measured counter-clockwise from the fixed +x axis to the ascending node direction.

The inertial +x axis is initially pointing from the moon's center to the Earth at t = 0. The

inclination i is with respect to the x - y or Earth-moon orbit plane. Longitude angle 0 is

11
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the in-plane angle measured from the ascending node to tile spacecraft ill the direction of

motion. Therefore, 0 is the sum of argument of perilune co and true anomaly v.

The gravity potential gradient VU for the combined Earth and moon gravity field is

VU - #'_F I _'_ F__m (27)r 3 #_ _ D 2

where the gravitational parameters of the Earth and Moon are represented by #_ and #m,

respectively, rv_ is tile radius vector from the Earth to the spacecraft, g_-m is the radius

vector from the Earth to the moon, and D is the constant separation distance between the

Earth and moon. The components of VU are

vu, - + (28)
r2 3 D 3r e

VUo - #,r. o + #_r_-mo (29)
r 3 D 3

(30)
VUh- 7g + D a

re

where the subscripts r and 0 correspond to components along the radial and circumfer-

ential in-plane directions and the subscript h corresponds to the direction normal to the

instantaneous orbit plane.

The in-plane pitch thrust steering angle u is measured positive above the local horizon

to the projection of the thrust vector onto the orbit plane. The out-of-plane yaw thrust

steering angle v is measured positive above the orbit plane to the thrust vector and is

between 4-90 degrees. The thrust acceleration of the spacecraft, aT, is computed by divid-

ing the constant thrust magnitude, T, by the current spacecraft mass. The mass of the

spacecraft is denoted by m, and propellant mass flow rate m is considered positive out of

the vehicle.

The initial conditions (20-25) represent the 1000 x 50,000 km lunar elliptical polar

orbit. Since the optimal LOI insertion burn occurs near perilune, the spacecraft is assumed

to be at perilune at t = 0. The initial eccentricity of the 1000 x 50,000 km orbit is 0.8995.
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The two terminal state constraints (26) define a circular, lunar orbit with unspecified

radius or inclination. The remainder of the 3-D low-thrust transfer to the polar HLO

is approximated by Edelbaum's analytic expression for 3-D quasi-circular orbit transfers

[11] so that the circularization maneuver can be removed from the long-duration, many-

revolution, near-circular transfer to HLO.

The goal is to find the thrust steering angles u(t) and v(t), the duration of the coast arc

before the SEP engine is initiated, and the final time tf for the end of the circularization

maneuver such that the final spacecraft mass re(t f) is maximized (or, equivalently, such

that the total fuel is minimized) and the spacecraft terminates in a circular, polar HLO. The

initial powered circularization maneuver is numerically simulated and the remaining 3-D

circle-to-circle transfer to polar LLO is approximated by Edelbaum's analytical expression

for quasi-circular transfers. Therefore, fuel mass is accounted for in both the numerically

integrated trajectory from elliptical orbit to intermediate circular orbit and the subsequent

quasi-circular transfer to polar HLO.

Minimum Eccentricity-Rate Steering

Initial attempts to solve the minimum-fuel circularization transfer problem via SQP re-

sulted in convergence problems due to discontinuities in the pitch thrust steering angle time

history. The pitch steering u(t) becomes discontinuous if the control nodes for the cubic

spline interpolation are limited to -180 to 180 deg or from 0 to 360 deg since the thrust

vector is continually rotating with respect to the local horizon as the SEP circularization

maneuver occurs. Therefore, the discontinuities can be removed by guessing a steering pro-

file between 0 and 360 deg for the first revolution, 360 and 720 deg for the second revolution,

etc so that the resulting optimal profile will be smooth. However, this approach requires

a fairly accurate estimate of the total revolutions completed before the circularization is

complete. A simpler approach would be to utilize the minimum eccentricity-rate steering
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law asa referenceand parameterizinga steeringanglebiaswith a cubic spline interpolation

through a set of control nodes.

The minimum eccentricity rate steering law is derived from the governingdifferential

equation for eccentricityfor two-body motion

[ r ]_= aT 2(e+cosu)cosc_+-sinusina (31)
_) a

where v is the velocity magnitude and r the radius. The in-plane thrust steering angle cr

is measured from the velocity vector to the projection of the thrust vector onto the orbit

plane and is considered positive above the velocity vector in the direction of motion. The

partial derivative of Eq. (31) with respect to steering angle c_ is

Oe --2aT raT
-- cos u sin c_ + -- sin u cos a (32)

OOz V av

By equating 0_/0a to zero, the steering angle which results in an extremal rate (maximum

or minimum) is determined. Therefore, equating Eq. (32) to zero and solving for a results

in the following extremal steering law:

r (33)
tan _* = _aa tall tJ

In order to determine if this law provides a maximum or minimum eccentricity rate, the

second partial derivative is computed:

02e --2aT raT
cos u cos c_ -- -- sin u sin a (34)

OOL 2 _d av

The common terms v and aT are canceled and the following expressions for sin a and cos a

from the extremal steering law are substituted:
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sin a* = r sin v (35)
v/r 2 sin 2 v + 4a 2 cos 2 v

Therefore, Eq. (34) becomes

cos a* = 2a cos u (36)
x/r 2 sin 2 u + 4a 2 cos 2 u

02_ -4a cos 2 u - _ sin 2 u
a < 0 for all u (37)

Oa _ - v/r 2sin 2u+4a 2cos 2u

Since the second partial derivative is always negative, the steering law presented by

Eqs. (35-36) provides the maximum rate for increasing eccentricity. To derive the minimum

eccentricity-rate steering laws (maximum negative eccentricity rate), the signs are reversed

on Eqs. (35-36):

sin a* = -r sin u (38)
x/r 2 sin 2 u + 4a 2 cos 2 u

cos a* = -2a cos v (39)
x/r 2 sin 2 u + 4a 2 cos 2 u

These expressions represent the minimum eccentricity rate steering law since substitution

into Eq. (34) results in a positive second partial derivative.

The steering law denoted by Eqs. (38-39) ranges from -180 < a* < 180 deg for 0 <

u < 360 deg. Therefore, the "discontinuity" of the pitch steering law has been accounted

for. Since the minimum eccentricity-rate steering law does not necessarily correspond to

the minimum-fuel pitch steering for the circularization maneuver, a bias steering angle ub

is added to reference steering angle u*

u = u* + ub (40)
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wherethe referencesteeringu* is

u" = + (41)

and a* is the minimum eccentricity-rate steering law from Eqs. (38-39) and 7 is the

flight path angle. The pitch bias angle ub is now the control that is parameterized by a

cubic spline fit through 11 control nodes. The yaw (out-of-plane) thrust steering angle v

is not discontinuous so parameterization is maintained with a cubic spline fit through 11

additional control nodes. Therefore, the total optimization problems has 24 SQP design

variables (22 control nodes, t_oast, and t f) and two equality constraints requiring termination

in a circular lunar orbit.

Results

The optimal minimum-fuel circularization trajectory was computed for the TROPIX-

derived SEP spacecraft. As a result, the spacecraft coasts for approximately one day

after the LOI chemical burn at perilune and initiates the SEP circularization maneuver

at apolune. The optimal continuous-thrust circularization maneuver lasts 14.7 days and

completes about four revolutions about the moon as indicated by Fig. 3. The integrated

AV for the circularization maneuver is 215.5 m/s and the circular lunar altitude after

four revolutions is 19,300 km. The corresponding apolune and perilune altitudes for the

optimal circularization maneuver are presented in Fig. 4. It is observed that the optimal

circularization maneuver trades between reducing (increasing) apolune (perilune) while

holding perilune (apolune) constant until both apolune and perilune meet at 19,300 km.

Edelbaum's approximate analytic equation is used to compute the subsequent circle-to-

circle transfer to polar HLO and the result is a 29.6 day transfer with an integrated AV of

442.7 m/s. The resulting optimal thrust steering histories for the circularization maneuver

are presented in Fig. 5 and the "discontinuities" in the pitch steering profile are noted.
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Figure 3: Optimal SEP lunar circularization maneuver

The optimal yaw steering angle oscillates at the orbit period frequency and is fairly small

in magnitude.

IV. Lunar Escape Trajectories

After a prolonged stay at polar LLO for scientific data collection, the spacecraft uses

the SEP system to escape the Earth-moon system enroute to the comet rendezvous. For

preliminary mission planning, the baseline escape trajectory was determined to have zero

excess energy at the Earth's heliocentric SOI (i.e., C3 = 0 km2/s2). In this section, the

optimal minimum-fuel, Earth-moon system powered escape trajectory is computed for the

SEP spacecraft.

Trajectory Optimization

The objective is to compute the minimum-fuel, continuous-thrust trajectory for the

escape maneuver from circular polar lunar orbit to zero-energy conditions with respect to
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Earth (Ca = 0 km2/s2). Therefore, the SEP spacecraftwill have zero hyperbolic excess

speed(v_ = 0) at the Earth's SOl for the baseline mission.

The complete optimal control problem is given below:

For the free end-time problem, find the pitch and yaw thrust steering angles u(t-) and

v(t), and the Julian date for the beginning of the escape which minimize

j = -m(tJ (42)

subject to the three-body equations of motion (14-19)

with the initial conditions

x(O)=

and the terminal state constraints

(43)

¢[x(tf),tl] :0 (44)

The states z and governing differential equations of motion are referenced to the moon-

centered, inertial coordinate frame as defined in section III. The initial conditions (43)

represent a circular, polar lunar orbit at an altitude of 8,500 km. This was determined

to be the initial condition for the numerical trajectory optimization problem since the

SEP transfer from 450-km polar LLO to 8,500 km altitude is nearly circular and can be

approximated by Edelbaum's analytic equation. The corresponding quasi-circular transfer

as computed by Edelbaum's equation requires 50 days. The terminal state constraints (44)

represent the requirement that the final energy with respect to the Earth at t = t] be zero.

The moon-centered states x must be transformed to an Earth-centered inertial reference

frame and the spacecraft's energy with respect to the Earth is calculated

19



V 2 #eE - (45)
2 7"

where cc is the energy of the spacecraft with respect to the Earth, and v and 7" are tile

velocity and radius of the spacecraft with respect to an Earth-centered inertial frame.

The goal is to find the thrust steering angles u(t) and v(t), the optimal date for beginning

the escape maneuver, and the escape time tf such that the final spacecraft mass re(t f) is

maximized and the spacecraft terminates with zero excess energy. Since the mass-flow rate

is constant, this problem is again equivalent to a minimum-time problem. As before, the

optimal control problem is solved with SQP. The thrust steering angles u and v are both

parameterized with 31 control nodes fit with a cubic spline. Therefore, the SQP problem

has 64 design variables and only one equality constraint that enforces the zero Earth-energy

at t=tf.

Results

The minimum-fuel escape trajectory was obtained by SQP and the resulting spiral

trajectory is shown in Fig. 6. The total trip time from polar LLO to Earth escape conditions

is 83.5 days and the total equivalent AV is 1360 m/s. The Earth's orbit about the moon

is shown by the dotted curve and the Earth's position is indicated at different time points.

The first 50 days of the low-altitude escape spiral is not shown in Fig. 6. Therefore, the

Earth-position markings for t = 0, t = 6.6 days, etc are referenced to time after the 50-day

quasi-circular transfer computed via Edelbaum. It is observed that at escape conditions

(t = 33 days on the figure), the trajectory is directly opposite the Earth's current location.

Therefore, the spacecraft maximizes the final energy by timing the escape maneuver such

that during the last revolution the distance to the Earth is maximized. Although the
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Figure 6: Optimal escape trajectory

Earth's SOI is not shown in Fig. 6, the optimal powered escape trajectory terminates well

within the SOI. Therefore, excess Earth-relative energy (Ca > 0) is achievable by continuing

the powered SEP escape maneuver out to the SOI.

V. Summary and Conclusions

A preliminary study of the individual phases for a lunar-comet rendezvous mission has

been performed. The study was in support of the Diana mission proposal for NASA's

1994 Announcement of Opportunity (AO) for Discovery class exploration missions. The

approach taken here was to analyze and optimize each trajectory segment individually.

Since the trajectory optimization problems involved a mix of continuous control functions

and discrete control parameters, a direct optimization method, namely sequential quadratic

programming (SQP), was used.

The comet rendezvous problem in heliocentric space was initially solved using SQP. A

penalty function approach was used and proved to enhance the convergence properties of
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the problem. The minimum-fuel, continuous-thrust rendezvoustrajectories were obtained

for the cometsWilson-Harrington and Clark. The preliminary analysishelpedprovidegood

initial guessesfor subsequentcalculusof variations-basedtrajectory optimization programs

that allowedmultiple thrust and coastarcs.-

The optimal minimum-fuel lunar capture and escapeproblemswere solvedusing SQP

in the contextof the restricted three-bodyproblemdynamics.A mininmm eccentricity-rate

steeringlaw wasdevelopedfor the lunar orbit circularization maneuver.The minimum-fuel

lunar escapeproblem to zero Earth-relative energywasalsoreadily solvedusing SQP.

The trajectory optimization codesdevelopedin this study were used to individually

optimize the respectivetrajectory segmentsof the overallmissionasspacecraftparameters

suchas mass,power, specificimpulse, and orbit boundary conditions changedduring the

Dianamissiondesign. The direct optimization approachallowedfairly quick mission iter-

ations and overall mission integration. The trajectory optimization codesare available to

NASA Lewis ResearchCenter and resideon the VAX computer system.
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